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Principles of Problem Solving (p76), “Exercise 20(a)". Same question as in 20(aytlwith f,, 4 =f,°f,
instead off, °f,,.

§2.4, “Exercise 44(d)". Suppose lim . f(x) and lim, . g(x) are bothc. Show that
limy 5 (f(x) +9(x)) = .

82.4, “Exercise 45". Supposef is a function on the real line, and and L are real numbersProve that

lim, 5 f(x) =L holds if and only if the following holds:

For every open interal (s,t) containing L there exists an open intaiv (u,v) containing a
such that foreery real numberxza in (u,v), thereal numberf(x) liesin ,1).

O

This gives another formulation of the concept of limiflf you are unsure of the meaning of “open intdty see
the topic “Intervals’on pp. A3-A4.)

To prove the abee result, you must shotwo things: That if lim,_ , f(x) =L holds (under the book’
definition), then condition{ holds, and coversely, that if condition () holds, then ling ., f(x) =L holds.

82.4, “Exercise 46”". Let f be the function defined by the conditions thax ifs irrational, thenf(x) = 0, while
if x is a rational number whosemession in lowest terms imn/n (i.e., such thatx = m/n where m and n
have o common dvisor, and n is positve), then f(x) = 1/n. Show that for eery real numbera (rational or
irrational), lim,_ . f(x) =0.

82.4, “Exercise 47". Exercises 44(a) in Stert, and 44(d) abee, show us wo srts of functiong(x) having the
property that whener one adds them to a functiofi(x) satisfying lim, f(x) =, one must get a sum
whose limit asx - a is agin o; namely functions g(x) that approach a (real) limit, and functiog$x) that



approache as x - a.

(a) Finda dharacterization oéll functionsg(x) having this property I.e., find an easily described condition on a
function g(x) such that if g(x) satisfies your condition, then forvery function f(x) which satisfies
limy, 4 f(x) = one also hasim,  , (f(x)+g(x)) = o, and such that, carersely, if for every function f(x)
which satisfies lim |, f(x) = one has lim (f(x) +g(x)) = o, then g(x) satisfies your condition,

If you dont know where to start, you might look at the functigiix) = sin 1/x, and try to decide whether it

has the desired property far= 0.

(b) Onecan also ask: Which functiong(x) havethe property that fosome(rather tharewery) function f (x)
which approachese as x — a, one haslim, . (f(x) +g(x)) = «? Can you answer this question, or at least
showv by example that the answer is not the same as the answer to part (a)?

82.4, “Exercise 48". Shav by examples that in the situation of ®@t's 8.4, Exercise 44, ift = 0, then (for
various choices off and g), lim, . (f(x)g(x)) can be 01, -1,, -0, or undefined (i.e., neither greal
number noreo, nor —co),

82.4, “Exercise 49”. Given real numbers a and b, consider the behavior ofax 1+bx 2 as x
approaches L) (i.e., approaches 0 from al®). Underwhat conditions ona and b will this function hae limit

+00? —0? Are there cases in which it has neither of these limits? If so, what does it do in such cases? Can you
prove your assertions?

§2.5, “Exercise 74”. (a) Prove: If f is anincreasingfunction (i.e., a function satisfying<y = f (x) <f(y)),
whose domain is an open intatv(a, b), andwhose image (the set of values it@akon) is an open intalV
(c,d), thenf is continuous.

(b) Deducefrom (a) that the same result is true fadexcreasingunction. (You will get full credit for this part,
even if you do not do part (a), as long as you correcthysthat this result follows from the statement of (a).)

§2.5, “Exercise 75”. (a) Shav (using the precise definition of limit) that ff is a real-valued function on an
intenal (a,b) whose values areverywhere positie, then lim,_ .. f(x) =0 if and only if lim, _ ., f(x)_1 =
o, (Here f(x)_1 means 1f(x). Whenone means thewerse function tof, one writesf _1(x).)

(b) Deducethat if f is acontinuousreal-valued function on an intea (@, b) whose values are nhere
zero, then lig _ . f(x) =0 ifand only if either lim _ . f(x)_1 =o0 or lim, .. f(x)_lz -0,

82.5, “Exercise 76”. Supposef and g are continuous af. Show that the functionh defined by

h(x) = max(f(x), g(x))
is also continuous aa. (Here max{, y) means the maximum ox and y, i.e., whichger of them is larger if
they are not equal, or their common value ifyraee equal.)

82.6, “Exercise 82". Supposef: R - [R is an increasing function (i.e., has the property that weena < b
we hae f(a) <f(b)), andthat there exists a s& of real numbers such thdtf (s) | s[0S} is unbounded ale
(i.e., for every real numberN there is somes such thatf (s) > N).

Shaw that lim,  f(x) = co.

§2.6, “Exercise 83". Suppose lim | , g(x) =, and lim,  f(x)=L. Prove hat lim, . f(g(x)) = L.



82.6, “Exercise 84". Supposef is an increasing function whose domain is an iaterfa, «), where a is a
real number and whose range is the whole real ling-o,). Show that lim .. f(x) = —e, and

limy | o F(X) = .

83.2, “Exercise 65”". Supposep and q are polynomials, andn < n are positie integers. Prge that themth
derivative & p(x)q(x)" is divisible by q(x)" ™™, (Suggestion: Us®lathematical Induction, weewed on pp72
and 74.)

83.2, “Exercise 66". Supposep and g are polynomials, anch a positive integer Prove that thenth deriative
of p(x)/q(x) can be written as a rational function with denominamﬁx)”ﬂ; i.e., that there is a polynomial
a,(x) such that D" (p(x)/q(x)) = an(x)/q(x)n+1. (Suggestion: Usévathematical Induction, véewed on

pp.- 72and 74.) Note that you are not asked to find a formulafdx); that would be much more difficult.)

83.3, “Exercise 59”. The point of this gercise is to ma& precise the reasoning of Example 4, p.195.

Supposef is a function, andp (for “period”) is a positve integer such thaff is p-times differentiable, and
such thatf(P) = f. Show by Mathematical Induction (pp.72, 74) that the functibnis in fact n-times
differentiable for eery positive integer n, and that each of its higher desiives £(M) equals one of thep
functions f, f', £, ..., f(P~D),

83.5, “Exercise 81". (a) Let f be a differentiable function, and consider the euw = f(y). Suppose a
differentiable functiong is defined implicitly by that equation; i.e., that the eurw = g(x) lies in the curg
x =f(y). Obtain a formula forg' by implicit differentiation.

(b) Apply the abee result to the functiorf(t) =t" for n a positive integer: Namea function g that is defined
implicitly by x = f(y), and assuming this function is thfentiable, get a formula for its degiive wing the
result of (a). Check your formula against what youvkno

(c) Likewise, for f(t) = et, name a function defined implicitly by = f(y) and assuming it is dérentiable,
apply the result of (a) to find its desfive.

83.11, “Exercise 60”. This ercise is lile Sewart’s Exercise 59, but more is left to you to disen
Shaw that almost eery function of the form(aerx +b)/(c e+ d), where a, b, c, d, rare real constants,
has the same graph as sorgpdrbolic function, but shifted and stretched in appropriagsw (You need to find
the appropriate yperbolic function(s), the kinds of stretching and shifting occurring, and the cases that must be
excluded for your result to hold, just a=0 and b=0 were excluded in Exercise 59.)

84.3, “Exercise 94”. Let f be a continuous function on an interval

(a) If f is differentiable, shw that the following conditions are egglent.
(i) f is concae yward in the sense of the Definition on p. 296.
(i) Forall xy<x; in I, the part of the cuev f(x) with x5 <x<Xx; lies belav the line sgment connecting
(Xg: F(Xg)) and &q, f(xq))-

(b) Give an example of a continuous functiori which is not differentiable verywhere on its interval of

definition (so that condition (i) is meaningless, since with novaéere, one cant define the tangent line),ub
which satisfies condition (ii) abe.

Remark: (ii) is a more commonay of defining concavity than Start's. Anotherdefinition, in the spirit
of (i), but meaningful and equdlent to (ii) whether or nof is differentiable, is



(i) Forevery xo Ol there exists a line passing throughy,(f (xp)) andlying belav the curvey = f (x).
All the abore definitions are a little ambiguous, due to a slight ambiguity in the wiaidg/e” and “below”.
If we take them to meare and <, then we get a standaréngion of the concept of condty. If we take them to
mean > and <, ecept at the obvious points where equality must h@liimely the point of tangencin
Stevart’s cefinition, the pointsx; and X, in condition (ii) abee, €tc.), then we get a concept callestrict
concavity’. For instance, the functiofi(x) = |x| is cncave ypward, but not strictly conwa yward.

84.3, “Exercise 95”. Supposef is a differentiable function on an intatv(a, b). We haveseen in Steart that
if f' is positve an the whole interval, therf is increasing.However, though the functionx® on the interal
(-1,1) is everywhere increasing, it satisfieE(0) = 0, hence its desitive is not eveywhere positre. This
exacise notes some criteria that apply to such caBets (a), (b), (c), (d) are successy more difficult.
(a) Supposd’' is positive & all but one poinbf (a, b). Show that f is increasing on therholeinterval.

(b) Supposef' is positve & all but afinite numberof points of (a, b). Agan shav that f is increasing on the
whole interval.

(c) Let g be the function on(-1, 1) given by g(x) = (xsinx )2 if x#0, andg(0) = 0. (Thus, g is 0 at
infinitely mary points, and positie wherever it is not 0.) Shav that if f is a function satisfyingf' = g, then f
is increasing on the whole interval.

(d) Findand pree a ondition onf' which isnecessary and didientfor f to be increasing. (Thus, (a)-(c) will
be special cases of your result.)

84.5, “Exercise 77". Shaw that the curvey = \/(X2+ 1) has asymptotey =x andy = - Xx.

84.5, “Exercise 78". Exercises 72, 73, ant/'7” above gve some examples of slant asymptotes ydrbolae.
Let us generalize these, and note a related result.
Supposea, b, c are real numbers, witla > 0.

(a) Findthe asymptotes of the curye=V(a X2 +bx + C).
(b) Shavthaty=-v(a X2 +bx + c) has the same asymptotesyas V(a X2 +bx + C).

84.5, “Exercise 79”. (a) Shev that the curvey = §/(x3+ 1) has the asymptotg = x.

(This requires more original thought than the precedirgaxrcises, since we kan't studied methods of
finding limits of differences wolving cube roots.Suggestion: Eithefigure out hav to “rationalize numerators’
of such expressions, or use I'HospsdRule.)

(b) Similarly determine the asymptotes of the aswy = %/(x3+x), y = ?’/(x3+x2), and generally y =
Y@ +bx%+cx +d).

84.5, “Exercise 80". (a) Findthe regions of increase, decrease, and upward amdwi#od concavity of the
curvey= 3/(x3+ 1) (part (a) of the precedingercise), and sketch the curve.

(b) Theabore airve has a kind of symmetry not discussed bywste Expresghis symmetry in a preciseay.
(Note that symmetry of a cuswebout they-axis can be expressedf ‘(x,y) lies on the curve, so dods-x, y)",
while symmetry about the origin saydf ‘(x,y) lies on the curve, so dods-x, -y)”". You should get a similar
description for the symmetry of the afeoaurve.)



84.9, “Exercise 80”. (a) In this part we will see that functions which areldse’” to one another hse
antidervatives which are also “close”.

Let f and g be functions on an inteaV (a,b), and let d be a positie real number such that
[f(xX)—g(x)| <d for all x[(a, b). Supposehat f has an antiderative F, and thatg also has an antidestive.
Shaw that g will in fact have an antiderivative G such that F (x) - G(x)| <d(b—-a) holds for all x ((a, b).

(b) Isit true that in this situatioevery antidervative G of g will satisfy the abwe inequality? Wl or why
not?

(c) Inthis last part, you will she that no analogous result is true fberivatives Namely show that for ay
interval (a,b) and ary positive real numbersd and N, there exist differentiable functions and g on @, b)
such that f(x) -g(x)| <d holds for all x [(a, b), but such that not allk ((a, b) satisfy |f'(x) — g'(x)| <N.
(Suggestion: Letg=0. Then, the problem is just one of findirfigwith appropriate properties.)

84.9, “Exercise 81". (a) Findthe most general antideative d the function x 113

-1/3

(b) Findthe most general antideative d X which can be made into@ntinuousfunction on the whole

real line by giving it an appropriate valueat 0.

Appendix E, “ Exercise 51”. (As pepamation for85.2.) Gven asequence of real numbess, a,, ..., a,, ..., it
may be hard to find a general formula ff)f‘zl g;. Howeve, given such a sequence, and a formtﬂ@zl g =
by, I claimthatitis easy to determine whether the formula is true. Namely,

(@) Gwen ssquences of real numbees, a,, ..., a,, .. andbg, by, by, ..., by, ... with by =0, prove hat
the formula Zinzl g = b, holds for all positie integersn if and only if b, = b,_; =a, holds for all positre
integersn.

(b) Usingthe abee result, pree formula (e) on p. A37.

85.3, “Exercise 87". This eercise concerns cases where the Fundamental Theorem of Calculus (partrigtdoes
apply To prepare for these, you should do

(@) Supposef and g are two functions defined on an intev [a,b] which agree xcept at a single point
cUa, b]. le.,supposef(x) =g(x) for all x# c in that interval, whilef(c) and g(c) are defined but are not
equal. Sha that if the integralj:f(x) dx is defined, ther]’:g(x) dx is also defined, and is equal gt%f (x) dx.
Using the abee result you should not find it hard to do
(b) Let h(x) be the function onlR which is O except atx = 1, and hash(1) = 1. Shaw that f:h(x) dx is
defined for allx, and is differentiable, but that its deative is not everywhere equal tch(x).
Similarly,
(c) Let j(x) be the function which is defined toVevalue -1 when x is negdive, +1 when x is positve, and

0 when x = 0. Show that J’;(j(x) dx = |x| for all x, but that the conclusion of the Fundamental Theorem of
Calculus (part 1) fails for this function whet= 0.

85.5, “Exercise 95”. Supposef is a continuous function which is periodic, with peripdi.e., which satisfies
f(x+p) = f(x)

for all x. Show that the integral off over aperiod is independent of the choice of starting-point; i.e., that for all
real numbersa and b,



a+p _ b+p
Ia f(x)dx = J’b f(x) dx.
(There are seral possible ways to pve tis.)

86.1, “Exercise 62”. Let a be a real number 1. We would like to find Ila In xdx, but we haen't seen ay
antidervative d Inx. Howeve,

(a) Describeand sketch a region whose area represents the desired integral.
(b) Findthe area of this region by integrating with respecyto

(c) Renaminghe x in the abee integral as “t”, and the a as ‘x”, get a formula for_[lx In tdt, valid for all
x>1.

(d) Shav by differentiation that the function you found in (c) is an antidéisie d Inx not only for x > 1, but
forall x>0 (.e., all x in the domain of Irx).

87.1, “Exercise 75". (a) Shev that for eery integer n=0, one has Ix”exdxz Pn (%) e*+C for some
polynomial p,, of degreen.

(b) Writing the polynomial p,(x) of part (a) as anx”+ an_lxn_1+ ... + a5, epand the equation
(P, () €)' =x"e*, and sohe tofind a,, ..., 8y exactly. Thus, get an exact formula fgrx" e dx.

1/n
(c) Deducea formula forIeX dx for n a positive integer (Hint: The n in this part need not be the same as
the n in the case of (b) which you will maksse of.)

87.1, “Exercise 76". Evaluate the intgral I((x—l)/xz) e dx. (Suggestion: Bgin by writing the integrand as
the sum of tw functions, and applying integration by parts to one of them, leaving the other unchanged.)

87.2, “Exercise 71”. Evaluate the integraJt sinx tan®x dx.

§7.2, “Exercise 72”. Evaluate the intgral _[sech csex dx. (This is not hard to sodvusing material in a later
section; but see whether you can do it using the ideas of §7.2.)

87.2, “Exercise 73". In Example 9 on pi84, Stevart says thatj sin 4x cos % dx “could be galuated using
integration by parts”, but does it a differenaw Show how to do this by integration by partqHint: Thepattern
will be like that of Example 4 on p.472.)

The result looks different from the answer he getsydhaw these results can be reconciled.

87.3, “Exercise 45”. In a class some years ago,avgas a problem the ingeal J(Gx - xz)_l/zdx. The answer
one gets by completing the square and making a trigonometric substituﬁtnﬁjrs(x/3 -1 + C. Howeva, one
student showed me a different way she had approached the problem: she had cﬁim'rtte)zlz)_l/2 as
x_1/2(6 —x)_l/z, noted thatx™ "2dx = 2d(x1/2), andmade the substitution = x”2 This turned the inggral into
2{(6 - uz)_l/zdu, and trigonometric substitution applied to this integral leads to the anzw’er_l(x/6)1/2+ C.
One might suspect, therefore, thain_l(x/3 -1 = 25in_1(x/6)1/2, which in particular wuld say that
sin(ZSin_l(x/(S)l/z) =x/3 - 1 But this is not so:if you apply the sine function t@ sjn_l(x/6)1/2 and use the
double angle formula, you get an algebraic expressiox, ifut it is not x/3 — 1. How can these answers be

reconciled?

87.4, “Exercise 76”. In “87.2, Exercise 72", | challenged you to attempt the gnid I sech csex ox,
mentioning that it could be done more easily using a method from a later re&uinthat integral n@, by



making the substitutionu = snx, verifying that it comerts the integrand into a rational function af,
integrating this by the methods of §7.4, and, of coursejetiimg the result back to a function af

87.7, “Exercise 51”. In this «ercise, you will work out the details of the proof of the Error Estimate for the
Midpoint Rule.

We begn by considering then=1 case; i.e., a single undivided interval, which we will denfate h, ¢+ h].
Let f be a function defined on that interval, twice differentiable, and satisfyiigx)| < K for all
xO[c—h,c+h]. Ouridea will be to sher that the functionf is “close to’ the linear functiong(x) given by
g(x) = f(c) + f'(c)(x—c), whoseintegral is exactly gien by the Midpoint Rule. To do this, let e(x) =
f(x) = g(x).

In some of the calculations belpyou may find propertieg and8 of the integral, gien on p 387, useful.
(@) Shov that at x=c, e(x) has value and destive both equal to 0, and that for ak O[c-h,c+h],
le"|<K.

(b) Deducehat for all x O[c—h,c+h], wehave [g'(X)|<K|x-c]|.
(c) Deducehat for all x J[c—h,c+h], wehave |e(X)|<K(x- c)2/2.
(d) Deducen turn that j':hh e(x)dx| <K h3/3. Translate this into a statement about the valuﬁc_aff(x) dx.

(e) Deducefrom this the Error Bound for the Midpoint Rulevgn on p518. (To do his, describe then
intenals into which the inteal [a,b] in the statement of that rule is broken up for the application of the
Midpoint Rule, and apply the ab® result to each of these. In justifying your computation, you may find the
Triangle Inequality on p. A8 useful.)

87.7, “Exercise 52". In this «ercise, we will prae the Error Bound for the Trapezoid Rule.

As in the precedingxercise, we begin by considering a twicef@iéntiable functionf on an interal
[c—h,c+h] such that |f"(x)| < K on that interval, and will first get what is in effect the= 1 case of the
desired lav, then deduce the general case by applying that case to each subinterval in a decompoaitigin of [

But our method of getting tha=1 case will be quite different from the method used for the Midpoint Rule.
(&) Applyintegration by parts tqccjhh f(x)dx, taking f(x) =u. This leaves abit of freedom in the choice ob:
it is uniquely determined only up to an added constérd., given one such functionv, any function of the form
v+a, for a a onstant, will also do.) Choose your so thatv(c) = 0.

(b) Now apply integration by parts again, to the integral on the right-hand side of the formula you got in part (a),
with u = f'. This time, choose youw so that it isO a one endpoint of[c—h,c+h]. Verify that this also
makes it zero at the other endpoint, and that this greatly simplifies the non-integral term in the result.

(c) Usethe assumptiorif"(x) | < K to bound the integral in your formula, andsttbat the resulting equation is
the n=1 case of the Error Bound for the Trapezoid Rule.

(d) Deducehe general case of the Error Bound for th@p€zoid Rule by applying the afgoresult to each of the
n subintervals into which that procedure swiiés |, b], andsumming the results.

87.7, “Exercise 53". In this «ercise, you will pree the Error Bound for SimpsamRule.

For simplicity, let us perform our main calculations with= 2 and a functionf on the interal [-1, 1].
Then, at the end, we can use changes of variables to turn estimates for a function on that interval into estimates
that work on each of the pairs of adjacent intervals into which an aitdev, b] is dvided in the general case of



Simpsons rule. Soin parts (a)-(d) belo -

0 Let f be a function on[-1, 1] which is four times continuously d@&rentiable, and whose fourth
derivative has absolute valueverywhere < a positive real numberK.

In our first two geps, we will reduce to a still more special case:

(@) Letfg,q bethe function or{-1,1] defined byfg, q,(x) = (f(X) + f(=x))/2. Shav that the error in the
n =2 3Smpsons rule approximation of_|’_l foyeqn(¥) dx is the same as the error in tle= 2 Impsons wle
approximation ole f(x)dx, and that f g, like f, has fourth dewiative everywhere bounded abe by K.
Deduce that the error bound will be correct for all functibrsatisfying () if it can be shown correct for all such
functions which arewen.

(b) Given an een function f satisfying (3, and ag constantc, consider the functlorf defined byf.(x) =
f(x) - cx2. Show that the error in then = 2 dmpsons rule approximation ofj f (x)dx is the same as the
error in the n = 2 9mpsons le approximation olef(x)dx and that f, Ilke f, has fourth derxiative
evaywhere bounded abe by K. By appropriate choice ofc, conclude that the error bound is correct for all
even functionsf satisfying ( if it is correct for all sucheen functions satisfyingf”’(0) = 0

(c) Shav that every evenfunction satisfying [() satisfiesf'(0) =0 andf'’(0) =0

(d) Now suppose thatf is, as abee, an e/enlfunction on[-1,1] that satisfiesf"(0) = 0. Tlranslate the
statement of the Simpsanfule approximation oﬂ'_l f(x)dx to a statement of an approximationj’gff(x) dx in
terms of its values at the endpoirisand 1, andranslate the error bound that you wish tovprimto a bound on
the error that approximation.

In the nat three parts, you will pre the correctness of the asserted bound fgrfaar times continuously
differentiable functionf on [0,1] whosefourth dervative is everywhere bounded byK, and which satisfies
f'(0) =f""(0) =f""(0) = 0.

(e) Given f as abwe, apply integration by parts four times, using as your sucoedsnctions u the functions

f, f', f", f'". As before, the functionsy that you use are determined up to constants, andehdokthe
calculation will be in the choice of those constants. At the first step, choose the constant so that uhe%erm
arising in the integration by partsvgs precisely the linear combination df(0) and f(1) thatyou obtained in
your translation of Simpsostule in part (d) abee. In the remaining three steps, on the other hand, choose
that v(1) = 0. Simplify the resulting formula foj;)lf(x)dx.

(f) Shaw that the functionsy occurring in the last tavseps abwe reve change sign or{0,1] (i.e., that each of
them is either alays < 0 or aways = 0. You will only need this fact for the function occurring at the last step;
but it is easiest to pree it for the next-to-last function, and deduce using this that it is true for the last one.)

(g) Deducethat the final integral that you get in the @aboalculations is bounded in absolutalue by
K |IO v(x)dx|, wherev denotes the function occurring in that role in the last of theealéegrations by parts.
Evaluate this integral.

(h) Goingback through steps (d), (b) and (a), deduce the correctness of the error bound m2h&8mpson’s
rule approximation for anfour times continuously differentiable functidnon [-1, 1].

() Given any four times continuously differentiable functidnon ary intenal [a, b], andary even integer n,
prove the error bound for the-step Simpsos rule approximation forja f(x)dx by breaking the inteat [a, b]
into n subintenals, grouping them into pairs of succeestibintenals, making a linear change of variables on



each of those pairs so that the integral there becomes an integral on tlaé irtér\d], applyingthe result of (h)
to that integral, and summing.

87.7, “Exercise 54”. (a) For d a positive integer computefolxddx. Also compute the Simpsan’Rule
approximation of this integral witlm = 2, and the error bound on that approximation, using the least podsible

(b) Subtractthe integrals from the approximations of part (a) tbe 1, 2, 3, 4 5, and compare the resulting
values with the error bounds youvsaddtained. (Yu could also consider the cade= 0, but the Simpsors Rule
approximation will not be gen in this case by the same formula as in part (a).)

§7.7, “Exercise 55”. In the approximate inggation rules we he gudied, Ax denotes l§f—a)/n. The three
error bounds gien on . 518and 522 are all expressed in termsbof a and n. Write dowvn for each of them
an expression in terms df—a and Ax (but not n), andan expression in terms dfx and n (but not b —a).

§7.8, “Exercise 83". Use the result of “§7.1, Exercise 75(8bove © calculate_[0 x"eXdx.

87.8, “Exercise 84”. (a) DetermlnewhetherI sin x2 dx converges. (Suggestionuse integration by parts:
since dcosx? contains adctor sinx? dx, let v= cosx2 let u be what it has to be, and note the behavior of
the expression you getou will need to apply the Comparison Test to the result it test is only stated in our
text for functions satisfyingf (X) = g(x) = 0. However, in fact, it is valid whenger f(x) = [g(x)|, which is what

you need.)

(b) Canyou find a continuous functiorf on [0,0] such that f is unbounded (i.e., takes on values with
arbitrarily large absolute value) bglgtof(x) dx is corvergent?

§7.8, “Exercise 85”. Supposea is a real numberf(x) is a @ntinuous function defined for akk > a, which
approaches some finite limit as x —» o, and c is ary positive real number.

(&) Shav that J’:(f(x+c) - f(x))dx corverges.
(b) Deducdhat if J':(f(x+c) +f(x)) dx corverges, thenj':f(x)dx converges.

(c) Deducehat Im x Lsinx dx converges.
m

87.8, “Exercise 86". The following examples illustrate twvochange of variables can cant improper intgrals
to ordinary integrals, or one sort of improper integral into another.

=1 on each of

€)) Thefollowing improper integrals all cmarge. Wbrk out the effects of the substitution=u
them: f x I 2dx I x3/2¢x.
(b) Saywhy J’ X cosx/zdx is an improper infgral. Ewaluate that intgral using the substitutiom = x/
which corverts it to an ordinary integral.

In all these cases, indicate wthe original improper intgral is equal to the meintegral that you get by the

substitution (taking as known that integration by substitution is valid for ordinary integrals).

87.8, “Exercise 87". (a) For which pairs of real number&a and b is the intgral Iom(xa+xb)_1dx
corvergent? (Prge your answerusing results from the reading.)

Once you hee lved this problem, you should not find it hard to answer:
(b) For which finite families of real numbem, ... ,a,, is the integraII: (x3+. .. +xan)‘1dx corvergent?

88.1, “Exercise 47". Suppose f(x) is a increasing continuously diferentiable function on an inteal
[Xg: Xo+AX]; andlet us write f(xg) =y and f(xg+Ax) =yy+Ay. (There is no assumption thadix or Ay is
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small; I am merely using these as wenient symbols for the changes in the valuexond of y between the

endpoints.)

x0+IE§t L denoztel}he length of the cary = f(x) betwgen the po!ntixo,yo). and (xg+Ax, ¥0+Ay); ie, L=
(L+f'(x)©)”*dx. Prove wsing properties of the integral (without relying on geometric facts) that

f,
((AX)%+(Ay)?)” < L < |Ax| +|Ay].

§8.2, “Exercise 40”. Suppose one takes a poi(®,yq) in the plane, rotates it around tikeaxis, getting a
circle in a plane parallel to thez-plane, and then rotates this circle about yhaxis, getting a surface in
3-dimensional space(As in 88.2, we are rotating a cengout an axis; but since it is not a carin the
x-y-plane, the picture is not quite as in that section.)

(a) Describe this surface (by equations and other conditions).
(b) Determine the area of the aaurface (as a function ok, and y).

(c) Suppose we started with the same pdixy,yp), but first rotated it about thg-axis, then about the
x-axis. Isthe surface we get the same as the one we got by doing the rotation in the original order?

88.2, “Exercise 41". How should formulas [4]-[8] on pb52-553 be modified to ger the case of a functioff
which is not assumedverywhere positte? (l.e., which may be posie for some values ofx and zero or
negaive for others.)

88.2, “Exercise 42”. (a) Supposef is anewen differentiable function on the intav [-a,a]; i.e., satisfies
f(—x) =f(x). Shav that for ay b > a, the area of the surface of rotation of the euyv= f(x) about the line
X =— b can be expressed in terms pfand the length of that curve.

(b) Whatcan be said about the analogous situation wiieeeanoddfunction, i.e., satisfie$ (—x) = —f(x) ?

(The answers to both parts &bae special cases of a result expressing the area of a surfacelatioa of a
curve in terms of the centroid of the curve; a variant of the Theorem of Pappus thatt States on p. 559.)

88.3, “Exercise 52”. Geometric intuition tells us that if we shift all points of a region invargdirection by a
given amount, the centroid will be shifted in the same direction by the same amount.

(@) Checkby calculation that in the formulas [9] on564 for the centroid of the region betweero taurves
y=f(x) and y=g(x), if we add the same constaatto both f and g (i.e., use the function$*(x) = f(x) + ¢
and g*(x) =g(x) + ¢ in place off and g), thiswill indeed increase thg-coordinate of the centroid bg.

This leads one to wonder wheth#éione adds a constartt to f only, they-coordinate of the centroid might
increase by .

(b) Shav that this not so. In fact, shoby example that in some cases, adding a pa@sitbnstant tof can
decrease thg-coordinate of the centroid.

88.5, “Exercise 22". Suppose W, and k are real numbers withko > 0. If a random ariable X has normal
distribution with meanpy and standardieviation o (i.e., has probability density functionvgh by formula [3]
on p.578), write down an integral expressing the probability (fraction of occurrences) afiftievhaving alue
at leastk standard deviations ab® the mean; i.e., satisfying > p+ko.

Shaow that the value of this integral depends onlylgnand not onp and o.

2
88.5, “Exercise 23". Although Ie_x dx is not an elementary function, it can be approxirgated in varieys w
by elementary functions. Let us look for approximations of the “w@iilthe distribution,J’Xoo e Udt, as x - w.



-11-

(&) Shav that for all x,
J.er—(x2+3x(t—x))dt < Ime‘tzdt < I°°e—(x2+2x(t—x))dt.
X X X

(b) Ewaluate the integrals on the right and left sides of theealbequality.

(c) Shav that of the abee o bounds on our integral, one has the property that the ratio of it to ograhte
approaches 1 as — o, while the other does no{Hint: UseL Hospital’s rule.)

(d) Usethe abee ounds to get bounds on the probability discussed in “Exercise 22”.

89.3, “Exercise 55”. Diagram (i) at right illustrates Stert’'s Froblem Plus number 15 on p. 638, which asks you
to find all cunes y = f(x) with the property that if a line is drawn from the origin ty @oint (X,y) of the
curwe, and then a tangent is drawn to the ewatvhat point and extended to meet the

x-axis, the result is an isosceles triangle, with equal sides meetifxgyat (Note: (i)

That sketch, and léwise sletches (ii) and (iii), which go with questions belare
notintended to correctly skothe shapes of the curves, but simply to end&ar the
relation between the cueend the isosceles triangle in each caséhg statement in
Stavart’'s Poblem Plus that the triangle is isosceles can be translated into a
condition on the slope of the cer& (x,y), diving a diferential equation that can f
be solved by the methods yowhdearned.

Varying that eercise, one can require, instead, that the triangle determined as
above e isosceles with equal sides meeting at the origin (sketch (ii)), or at the point
where the tangent hits tixeaxis (sketch (iii)). (i)

Each of these conditions canaay be transformed into a differential equation,
but the methods you ha learned do not e@r the equations one gets from (ii)
and (iii). However, there is another method that can be used toesalvthree
equations:

(x,)

(x, )

(a) Shav by geometric reasoning that ifA is a cure with ary of the three
properties described, then the aibtained by ‘magnifying” A by ary nonzero
real constantc; i.e., replacing each poin{x,y) by (cx,cy), hasthat same
property.

(b) Find a dfferential equation describing each of the \@baets of cures.
(Suggestion: lreach case, for a pointx,y), determinehe point(s) on the-axis
where the third ertex of an isosceles triangle of the indicated sort must lie. X, Y)
Compute the slope of the line froifx,y) to that point, and set that equal to the f
slope of the cuw & (Xx,y).)

Now it is not hard to see that the fact ped in (a) implies that each of the
eguations you get in step (b) can be put in the fgfmx F (y/x). Thereis a change
of variables that can be used in solving such equatitalee u = y/x and v =
In (x). Thenthe gven differential equation will turn into an expression fdy/du
in terms of u (not involving v). Henceby integrating, you canxgress v in terms of u. Transforming back
into (x, y)-coordinates, you will get an equation for the desired curves.

(For a motvation for the change ofariablesu = y/x, v =1In(x), andalso for the technique Stert gives in
89.6 for solving homogeneous and nonhomogeneous first-order linear differential equations, see

(iii)
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http://math.berkeleedu/"gbegman/ug.hndts/ode_symms.pdThe approach to linear equations ivaeped in
881-3 of that note; the approach to equatighs F (y/x) in &4.)

(c) Sole the equations from part (b) by the method indicated@bo
(Remark: Thecalculations in cases (ii) and (iii) are more complicated than | wowe &@ected from this
elementary geometric problem; but the final answers, when put in geometric form, are simplgaahdl ele

89.5, “Exercise 36(b)”. In §9.5, Exercises 35 and 36, the constantepresents the effect of air resistandée
value of that constant will in fact depend on the size and shape of the object.

Verify that if we tale various objects having different masses, but whose mass and whose caenstamnt
related in a certain ay, then thg will all fall at the same speed, contrary to what is stated at the end of
Exercise 36.

Another possible assumption is that the objects are the same in shape andhdemlftgr in their scale.If
we assume that fos the scalingéctor the mass of the object is proportional&‘(% while the constant, arising
from its surice area, is proportional tsz, show that Stevart’s conclusion that heavier objects fall fasteniag
becomes correct.

89.5, “Exercise 39”. In 89.5, Exercise 23, you learnedwhto snlve certain sorts of dierential equations by
making the substitutio = yl_n, which reduces them to linear differential equations.

Describe, similarlya dass of equations that can be reduced to lineferdiitial equations by the substitution
u=eY. (Suggestion: dthat substitution in kerse, starting with a linear differential equation.)

89.6, “Exercise 9(b)”. We will call Exercise 9 as gen in Sewart, p. 632 “part (a). In part (b) bela, we will
get an idea of whthe solutions to the Lotka-Volterra equationséndhe shapes shown ong29. (Soin your
answer to the final parts of that question, you caasstimehat theg havethose shapes.)

(b) Inthe solution of the separable fdifential equation gen in part (a), an intermediate step is an equation of
the form F (W) = G(R) + c. Sketch the functionsF (W) and G(R) invdved. Assuming value of ¢ chosen

such that the alve equation has solutions, describewhone could get such solutions from the graphsFof

and G. Indicate wly, for almostevey value of W such that therexésts at least one value & satisfying that
equation, there are in fact exactlyotaich values ofR, and for almost eery value of R such that there exists at
least one value oW satisfying that equation, there are in fact exactly such values ofW. Explain wty the set

of values of R and the set of values oV that can occur in the solution are both bounded, and describe their
maxima and minima in terms of features of your graphs.

810.2, “Exercise 75”. Let C be a cure which can be parametrized=f(t), y = g(t), and let t; be a pointin
the common domain of and g. Let P, Q and R be the values ofy, dy/dx and dzy/dx2 respectiely at
the point of C with t=1t,. Let a be a positie real number.

(@) Let C' be the cure dotained by stretching” C by a factor ofa, i.e., the curg parametrized byx = af(t),
y =ag(). Show that the values ofy, dy/dx and dzy/dx2 at the point ofC' with t=t, are aP, Q, and
R /a respectiely.

(b) If S isthe value ofd3y/dx3 at the point ofC with t=t,, what would you guess is the value d13y/dx3
at the corresponding point @2'? (You will not be graded on this part.)

(c) Let C" be the cure with parametrizationx = f(at), y = g(at). What are the values of, dy/dx and
dzy/dx2 at the point ofC" with t=t,/a?
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(Note: Rart (a) required calculation, and (c) can also be done in @atwt it can be done more easily by a
quick bit of reasoning about the relation between the cuG/esd C".)

811.1, “Exercise 94”". Prove the second of the mMimit laws in the box on p. 697, namely

lim, o (@,=by) =Ilim, _ ,a, = lim,_ ,b,.
Assume the tw limits on the right exist.

811.1, “Exercise 95”. This eercise will lead you through a proof, based on the Axiom of Completeness of the
real numbers, of the Extreme Value Theoren2{®), that is, the statement thaery continuous functionf on a
closed interval assumes an absolute maximum and an absolute minimum.
Let f be a continuous function on a closed inéér{a, b]. Letus define
S = {xqg O[a,b] | forevery x; [Ja, b] there exists arx, [[xq,b] such thatf(x,) =f(xq)}.
(Here {...} means “the set of all ’., and the vertical line] means “such that’ Theidea is thatS is the set
of those x(, for which we can hope thdt has an absolute maximum at soxe Xx,.)

(a) Shav that the setS has a least upper bourdd and that ¢ [[a, b].
(b) Shav that for eery 5>0, there is somes S satisfying § —c| <d.

We dhall nav show that f(c) is an &solute maximum for the functioh on [a, b]. To do tis, suppose, by
way of contradiction, that there were@[[a, b] with f(d) >f(c). Dothe next fev parts under this assumption.

(c) Shav that there exists ad> 0 such that for allx ([a, b] with |x —c| <J, we have f(x) <f(d).
(d) Deducehat every t [[a, b] satisfying [ —c| < d belongs toS. (Idea: Thevalues of f(x) for x close toc

are not big enough to affect whether a point belongS,t@o if one point in that range does, as shown by (b),
then all do.)

(e) Theabove shows thatc O0S; deduce from this that < b.

(f) Show that (d) and (e) together contradict our choicecofSince the abee was deduced from the assumption
that f(c) was not an absolute maximum féron [a, b], concludethat f(c) is indeed such a maximum.

(g) Theabore $ows that gery continuous function on a closed intaelrassumes an absolute maximubeduce
from this that eery continuous function on a closed interval also assumes an absolute minimum.

811.1, “Exercise 96”. (This exercise assumes youvedne 811.1, Exercise 91, p. 706.)

The harmonic mearof two positive real numbersa and b is defined to be2ab/(a+b), or, to put it in a
form which shavs the idea,((a_1+b_1)/2)_1. So, for instance, since the arithmetic mear2oénd 4 is 3, the
harmonic mean ofL/2 and 1/4 is 1/3.

(@) Shav that the analog of Exercise 91 is valid with “harmonic meanplace of “geometric mean”; in other
words, that by applying the operations of arithmetic mean and harmonic mean repeaateitly with a pair of
positve real numbers, one gets sequenegsand b,, which approach a common limit, which one might call the
“ arithmetic-harmonic medrof a and b.

(b) Shav that this “arithmetic-harmonic meams in fact thegeometricmean ofa and b.
811.2, “Exercise 93”. For al positive integersm and n, let an n= 1if m=n, 8 n= O if m#n,

(a) For each positie integer m, evaluate Zﬁle amn - (Note that the summation iw@ n only, with m held
constant. Sgou get a value for each.)
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(b) Usingthese values, compute lim ., (Z-; am n)-
(c) Onthe other hand, for each posggiintegern, compute lim,, am
(d) Usingthese values, compu'u‘;;’;’:1 (M, - o am,n)-
(e) Arethe results of (b) and (d) equal? l.e., do weeha
Mm_ o (Zn= 18m,n) = =1 (limp, o 3mp) ?
(f) Modifying the abwe wnstruction, find an example of a sequence of continuous fundtiofy (m=1) on

the real line which has the analogous properith J': replacing Z;"zl. (Suggestion: use functions defined
“ piecewisé’so that each is zero except on one ing&rin, n+1].)

(g) Canyou get an example with the same property butpiorrather thaq;0 ?

811.3, “Exercise 47". This eercise extends Steart’s §811.3, Exercises 29 and 30 (p. 726).

(a) For what real numbera and b does the serieiff:z n~2(In n)_b cornverge?

(b) For what real numbers, b and ¢ does the serieZ >_5n"2(In n) (I Inn)~¢ corverge?

811.3, “Exercise 48”. This ercise will shav that the condition in the Integral Test that the functigr) be
eventually decreasing is needed for the result to be true.

For any quencec = (cq, Cy, ...) of numbersc, 0(0,%2), let f. be the positie real-valued function on
[0,0) defined as follows:

For each positie integern, and all x in the interal [n—c,, n+c,], let f(x)=1-(n-x[/c,).
For all points x (1[0, ) not belonging to anof the abwe intervals, letf (x) = 0.

(@) \erify that for e@ery such sequence, the functionf, is continuous. (I do’ask here for ar-&argument;
just some observations that neake reasons intuitely clear) For c the sequencel/2, 1/3, 1/4, ..., sketchf,
on the interal [0,4].

(b) Shav that for such sequences the integraljgo f.(x)dx corverges if and only ifZ'fcn converges.

(c) Shav that for such sequences if we define a, =f.(n), thenthe seriesZ?fan diverges, rgardless of
whether Z7°c,, converges.

But from (b) we knw that for some sequences the integral off. corverges. Hencey the result of (c),
the cowergence of that integral does not imply the wagence of the corresponding seriEﬁan.

811.4, “Exercise 47”. Give an example of aconvegent series Z‘fan with all a, >0 such thatlim, _ ,na,
is undefined, and an example ofdergent sequence with this propertyThis contrasts with the result of
Exercise 43.)

811.6, “Exercise 54". Let (a,) be a ®quence.

(8) Supposehere is a nonmgtive mnstantc < 1 and an intger N such that for alln > N we hae
r\]/|an| <c. (l.e., suppose the sequencréf|@\n|) is bounded abee by some c<1.) Shavthat Za, corverges.

(b) Shav that if the comergence of Za,, follows from the root test, then it also follows from the \a&bo
criterion.

(c) Give a1 example of a series which cesrges by the abee aiterion, but to which the root test is not
applicable.
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811.6, “Exercise 55". let X a, be a series, and let the terraﬁ, a; be defined as in §11.6, Exercise Bhow
that the following conditions are eggdient:

(@) Someaearrangement ok a,, is conditionally comergent.

(b) lim, _ »a,=0, but Za’ and X a, both dierge.

§11.8, “Exercise 43". Suppose the power serieg x", b, x", and @,+b,)x" have radii of covergence Ry,
R, and R; respectiely.

(@) Shavthatif Ry <R,, then Rz =R;.

(b) Deducefrom part (a) that (without the assumption thij <R,) at least tvo of Ry, R, and R3 are
always equal. (Hint: Each of the three series can be obtained from the otleebywerm-by-term addition or

subtraction.) Ifthese radii are not all equal, what can one say about the relation betweea that tare equal,
and the third?

§11.8, “Exercise 44". If a, x" is a power series with radius of sergence R, and k is a positve integer find
the radii of comergence of the power seriea;'fxn, anxk”, and arlka”.

811.8, “Exercise 45”. Given a pwer seriesa, x", express its radius of ceargence in terms of the radii of
cornvergence of the tw power seriesa,,, x" and Aon+1 x".

811.8, “Exercise 46”. A function f(x) is defined by
fx) = 1+ 2x+x2 + 23 +x% + ...

That is, then-th term is x" if n is even, and (2x)" if n is odd. (To make tis fit the definition of a peer
series, we can vaite (2x)" as 2%™) Find the interval of comergence of the series, and find axplcit
formula for f(x).

Neither the ratio test nor the root tesvegi the radius of corergence. Neertheless, that radius can be
determined by arguments closely resembling those in the proofs of those tests; cf. “§11.6, Exercise 46”.

(Compare Exercise 37 in Start. Inthat ercise, the ratio test does not work, but the root test does.)

811.8, “Exercise 47". Find the interval of corergence of the power series

X + X212 - x313 - x%4 + x5 + x816 - x'17 - x8/18 + ...
Here the coefficients are the terms of the harmonic series, modified by alternately putting plus sigms on tw
successie rms, then minus signs on thexnewo. Preciselythe coefficient ofx™ is 1/n if n has the form

4m+1 or 4m+2, and -1/n if n has the form h+3 or 4n+4.
The radius of corergence should be easy to find; the behavior at the endpoints will require some thought.

811.8, “Exercise 48”. Find the radii of covergence of the following power series:
2
(@ =g (n"/ntyx" (b) =g (n"/(2n)) x" © = (2 /nny x" (d) =g x" /n!

811.8, “Exercise 49”. For any power seriesi°0°an x", show that its radius of corergence can be expressed by
the formula

R = 1/limy _ o (|.u.b.({§‘/m | n>N})).
Here the l.u.ls will be real numbers if the setves which they are taken are bounded alo We make the
corvention that the l.u.bof a ®t that is not bounded abmis the symbolw. In evaluating R, we dso male the
conventions 10 =oo, 1/00 =0.
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These coventions allav the abee @ncise statement of what the radius is in the three situations you will
prove an occur Separating them out, what you will find is the faling. First,if for some N the set shown is
not bounded ahe, then it is unbounded for alN, and the radius of caergence of the series i8. Secondif for
all N the set shown is bounded a&bpand the limit of the least upper bounds is zero, then the radius of
cornvergence is infinite.Finally, if they are bounded ah@ for all N and their least upper bounds do not approach
zero, then those bounds approach a finite pedithit, and the reciprocal of that limit, a poséireal numberis
the radius of carergence of the power series.

811.9, “Exercise 43". In “811.8, Exercise 471 asked you to find the interval of casigence of the power series
X + x2/2 - x3/3 - x4/4 + x5/5 + x6/6 - x7/7 - x8/8 + ..,

where the coefficient ok™ is 1/n if n has the formd4m+1 or 4n+2, and -1/n if n has the form4m+3 or

4m+4. Now find a formula for the sum of the algoseries.

811.10, “Exercise 87". In this &ercise, we obtain, by a third method, the formdla 1/2 + 1/3 — .. = In 2 that
Stawvart develops by two different methods in 811.5, Ercise 36, and Problems Plus 20 or88. Notethat this
is the formula we would get if we could substitwte 1 in the paver seriesxpansion In(H# x) =x — X212 + ..
+ (-1)™XN/n + .. (cf. Example 6, p755). We @an't do tis so &r, because we only ka hat expansion for
[X] <R =1; but the argument belowill show how to carry that formula from that case to the case 1. We
start with a general result.

In (a) and (b) bel, supposefy, f;, f,, ... areincreasing continuous functions (i.e., functions satisfying
f(xg) < f(X;) wheneer x5 <Xx;) on a dosed interal [a,b], suchthat for eery x[a, b], we have fy(x) <
fi(x) <fy(x) <..., and such that lim  f,(b) exists.

(a) Deducethat for every x[a, b], lim
learned.)

(b) Writing f(x) =lim, _ ., f,(X), shavthat f is continuous at the poir.

(Hint: Given ¢, dart by showing that we can find @ which puts fy (b) within £/2 o f(b), anda &
which putsfy (b—9) within £/2 o fy (b-9).)
(c) Considetthe infinite seriesZE”:l (—1)i+1xi/i, and for each nonmgtive integer n, let f (x) be the partial
sum zizgl (-1)'"*I! /i (note the ‘2n” in the range of summation!Shav that the conditions assumed in (a)
and (b) abee (stated in the sentence before (a)) hold for this sequence of functions.

n- o n(X) exists. (Thisis a quick application of aa€t we hse

(d) You already kner how to sum the infinite series of part (c) whgw| < 1 Use the result of (b) (and some
reasoning to takinto account the odd partial sums) to determine the sum wheh

The remaining tw parts are further observations on the general result of (b).
(e) Deducdrom (b) that under the assumptionsegi there, for gery c [i(a, b] one has limy - f(x) =f(c).

On the other hand

(f) Shav by example that forc [[a, b), lim, .+ f(x) need not equal(c). Hencein the context of (b), the
only point where we can be sufeis continuous isb. (But of course, when th&, are partial sums of a per
series, as in our application of the ebaesults in parts (c)-(d), then we kmdhat f is continuous eerywhere in
the interior of its interval of camrgence.)

Remark: ltis in fact known thaany powver series that ceerges at one end of its interval of e@gence is
continuous at that point. But proving that general result requires different methods, which we wile retgi
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811.10, “Exercise 88". (a) Supposef(x) is an evenfunction, given on an intenal (=R, R) by a power series
in X, where R is a positve real number oreo. Show that there exists a functiog(x) given on (- RZ, R2) by

a power series inx, such that for x O[O0, R2), onehas g(x) = f(yx). (Notethat this says nothing about the
vaues of g(x) for neyaive x.) Shav aso that if R is the radius of carergence of the power series fd(x),
then the radius of cerrgence of the power series foi(x) is RZ.

(b) If for f(x) in part (a) we tak the function cosx, show that for ngaive x, we have g(x) = coshy/ —x.
Conclude that the function ofR which for nonngaive x is given by cosyx, and for ngdive x by
coshy —x, is infinitely differentiable.

The abee equation g(x) = f(yx) can also be writterg(xz) =f(x). For variety, | will pose the last part of
this problem in the latter form.

(c) Supposeve want a functiong given by a pwer series abou® which for all nonzerox satisfiesg(xz) =
(sinx)/x. Show that such a function exists, agairveyi by a pwer series that cemrges for all real x.
Determine the value$§(x) takes forx=0 and for ngative X.

811.10, “Exercise 89”. (This is simply a variant presentation of part (b) of the precediagise; so it wuld
not male €nse to assign bothlxercises.)

(a) Shaev that neither cosV|x| nor coshV|x| is differentiable atx=0. Deduce that neither of them is
representable by a power series iy artenal containing 0. (Suggestionshavs that each is gen by dfferent

power series on the twsdes of 0.)
(b) Onthe other hand, skothat the functionf defined by

O cosV|x| if x=0
f(x)=0 o
OcoshV|x| if x<O

is given by a pwer series on the whole real line.

812.4, “Exercise 55”. From the identities Steart gives you for dot products and cross products8(¥, boxd
list 2, and p. 819, boxed list 11), de¥ia brmula relatinga -(bxc) and b-(axc) for all vectorsa, b and c.

§12.5, “Exercise 84”. Let A and B be parallel planesShav that if L, isalineinA and L, is aline inB,
and L, and L, are slew then the distance betwedny and L, is equal to the distance between the plaAes
and B.

812.6, “Exercise 54”. The equationz = 1, x2 - y2 =1 define a hyperbola in the plaree= 1. Let us call itH.
For each pointP = (x,y,1) of H, let us drav the line throughP and the origin, namely(tx, ty, t) Ot OR},
and let us call the surface formed by all these liBeshus,
S = {(tx, ty,t) O(x, y, 1) OH, t OR}.
Shaw that all points ofS lie on a cone. What points of that cone, if,ado not lie on S?
(Note: Thiscone will not be gien by an guation of the precise form shown on p. 837, because its axis will
not be thez-axis.)

812.6, “Exercise 55”. In the preceding»&rcise, replace theyperbola H with a parabolaP, dso in the plane
z=1, and compare the nature of the surface you get with that of the precadinge
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§12.6, “Exercise 56”. SupposelL, and L, are slew lines, andc is a positve real number Show that the
locus of pointsP such that (distance fror® to L) = c(distance fromP to L,) is a qiadric surhce. Which
type of quadric surface will it be? (The answer will dependtgn

812.6, “Exercise 57”. This eercise combines some concepts of this course with a fact taught in Math 54, so it is
aimed at students in this course wheéhather taken Math 54, or had a previous algebra course which discussed
the existence of nontrivial solutions to systemslfinear equations im unknowns whenm < n.
For n a positive integer let us understand a “parametric space ewl/degee < n” t o mean ag parametric

cune of the form

x = a t"+... +at+a,

y = b t"+ .. +byt+by,

z = c t"+. . +ct+cy,
where thea's, b’s, and ¢’s are real constants withnn, bn, C, not all zero. So, for instance, a parametric space
curve of degee 1 is a straight line.

(a) Shav that every parametric space cwewf degee < 2 lies in a plane; in fact, that if it is not a straight line or
a point, then it is a parabola in some plane.

(b) Shav that every parametric space cue\of degee < 3 lies in a quadric surface; in fact, lies in more than one
guadric surface.

(c) Doesevey parametric space cwe\of degee <4 lie in a quadric surface?
(d) Shav that not gery parametric space cue\of degee <5 lies in a quadric suate. (Suggestion: evify that
the curvex = t2, y= t3+t, z=t° does not.)
Hint for parts (a)-(c):To show that a gven gpace curvex =f(t),y = g(t), z=g(t) lies in, saya quadric
AXZ + Bxy+Cxz+ Dy2+ Eyz+ FZ2+Gx + Hy+1z+J=10

is equvalent to showing that there exist real numbéys...,J not all zero, such that when you substituig)
for x, g(t) for y andh(t) for z in the aboe euation, the equation holds for atl. If f(t) etc. are
polynomials, the equation will hold for atl if and only if, after substituting and collectingdikerms, all terms
are zero. Rgard this condition as a system of homogeneous linear equatiohs.in J

(Stewart gives a \ersion of part (a) alve a Froblems Plus number 9 to Chapter 13, p. 885.)

813.1, “Exercise 55”. Suppose we are\gn a pace curve
x=f(t), y=g(t), z=h(t), ast<b,

where f, g, h are continuously diérentiable functions, and we rotate it about xka&xis to get a surface of
revolution. (If you arent sure what this means, imagine that the etisvenbedded as a wiggly wire inside a cube
of plastic, and the&-axis is a rod running through the cube, and that we spin the cube about that rod, so that the
wire representing our function blurs into a surface.)

Derive a brmula for the area of this sade. (Hint: Isthis surfice the same as the surface obhgtion of
some cure in the x-y-plane?)

To check your answenote that if h is the zero function your formula should agree with formula 5 683.
of Stewart, while whenx =0, y=cost, z=dnt, your formula should ge QO
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813.1, “Exercise 56”. Suppose we are\gn a pace curve
x=f(t), y =g(t), z = h(t), ast<gh,
where f, g, h are continuously diérentiable functions and(t)>0. Letus define the‘Curtain” below this
curve to onsist of all points {(t), g(t), z) such that (< z< h(t). Derive a brmula for the area of this curtain.
Note that if g is the zero function, this should juswvgithe area under the parametrized euwv = f(t),
z = h(t) inthex-z-plane. Whashould it gve if h is the constant function 1?

§14.3, “Exercise 96,parts (b)-(d)”. Let us call the grsion of Exercise 96 in Stert “part (a)". As in that
exgcise, leta, b and c be the sides of a triangle, ad B, C the opposite angles.

(b) Taking a, b and c as the independent variables, fidd/da, dA/ob and dA/dc.
(c) Taking a, B and C as the independent variables, fidd/da, dA/0B and dA/oC.

(The easiest way to do part (b) is, aswste suggests for part (a), to write down thewLaf Cosines
a2 =b2 - 2bccosA + 02, and apply implicit diferentiation. © get part (c), on the other hand, use the formula
relating the three angles ofyammiangle.)

(d) Arethe values you get fodA/da in parts (b) and (c) the same? Should/the?

Further remarksfor a triangle rgarded as determined by the lengths of its three sides, part (6 atks for
essentially all the nontrivial calculations of partial datives of sdes and angles, since the partialsBfand C
with respect toa, b and c will be given by formulas lile those giving the partials of\, but with the roles ofa,

b and ¢ permuted; while the partials a, b and ¢ with respect to each other will b or 0. Patial with
respect to self = 1, partial with respect ty ather =0.)

On the other hand, for a trianglegeeded as determined biahgle-side-anglé’as in part (c), there are three
more nontrivial calculations: the partials of the lengths of one of the otbeides b or c) with respect toa,

B and C. A triangle gven by “side-angle-side’yields yet another four partial deatives to alculate. Ididn’t
assign these additional cases so as novédaoad the gercise, but if you're interested, you could work some of
them out.

814.3, “Exercise 106". (a) Supposeg and h are differentiable functions of onanable, and we define adw
variable function byf (X, y) = g(x) + h(y). Show that ny =0.

The remaining parts of thisxercise shav you hav to prove a larder result, the coerse: thatany
differentiable functionf of two variables which satisfiefsxy =0 can be writteng(x) + h(y) for some functions
g and h. Actually, for this to be true we need restrictions on the shape of the doméinTofkeep this rercise
simple, we shall assumkis defined on a rectangle. So —

In parts(b)-(d) below f will be a diferentiable function defined on aatangle{(x,y) Da<x<b, c<y<d},
and satisfying ;y(x,y) =0 for all (x,y) in this rectangle.

The idea will be to tak g(x) to be a finction which changes as does as one mres dong some horizontal
line, and h(y) to be a function which changes a@sdoes along some vertical line, and to adjust the valug of
h by an additre mnstant so that where this vertical and horizontal line nggd, + h(y) has the same value as
f; and then to pree that f(x,y) — g(x) — h(y) is the zero function, which is eqaient to the desired result that
f(x,y) =g(x) + h(y) everywhere.

So let us nav take any (Xg,Yq) satisfying a <xg<b, c <y <d, and define
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a(x) =f(x,yp),
h(y) =f(xq,y) = f(Xg, ¥o).
ex,y) =f(x,y) —g(x) = h(y).

(b) Shav that the functione(x, y) defined abwe stisfies
e(Xg,y) = 0 forall y suchthatc<y<d,
e(x, ¥p)
exy(x, y) = 0 forall (x,y) suchthata<x<b andc<y<d.

0 for all x such thata <x <b.

(c) Shav that if e is ary differentiable function on{(x,y) Oa<x<b, c<y<d} which satisfies the three
conditions preed in part (b), then its partial dertive e, is zero at all points of the horizontal line=y,, and
is constant on all vertical lines; hencevergwhere zero.Deduce thate is constant on all horizontal lines, hence
is everywhere 0.

(d) Deducehat f(x,y) =g(x) + h(y).

(e) To =ee that this result is not true for functions on arbitragyores, let D be the region gotten by rening
from the rectangle{(x,y) 0-2<x<2, -1<y<1} the line sgment {(x,y) O-1<x<1, y = 0}. Define f(Xx,y)
to be the function orD which is zero eerywhere except on the rectang{¢x,y) 0-1<x<1, 0O<y}, and is
given on that set byf(x,y) = (1—x2)2. Show that f is differentiable, and satisfief§y(x,y) =0 forall (x,y) in
D, but that there do not exist a functian(x) on (-2,2), and a functionh(y) on (-1, 1) such thatf(x,y) =
g(x) + h(y) everywhere onD.

814.3, “Exercise 107". Pat (a) belav is background, indicating the first step in a pattern which (b) and (c)
continue.

(&) Supposea(x) is a ontinuous function of one real variable, abdis a real numberShow that there is a
unique differentiable functiori(x) such thatf’(x) =a(x) for all x, and f(0) =b.
(Hint: Usethe Fundamental Theorem of Calculus.)

(b) Supposea(x,y) is a ontinuous function of te real \ariables, b(y) is a @ntinuous function of one real
variable, and ¢ is a real number Show that there is a unique functioh(x,y) such that for allx and vy,
f. (X, ¥) =a(x,y) (meaning that the partial deative with respect tox exsts, and has the stated value), foryll
fy(O,y) =b(y) (in the same sense), arifd, 0)=c.

(Suggestion: Théast equation determinefs at the origin; use this and the next-to-last equation to determine
it at all points of the/-axis, and then, gén its value at each point of tlyeaxis, use the first equation to determine
f on the horizontal line through that point.)

Using the same method in three dimensions, you shoeii& be able to do

(c) Supposea(x,yz) is a ontinuous function of three reaanables, b(y, 2 is a ®ntinuous function of tw
real \ariables, c(z) is a ontinuous function of one real variable, addis a real numberShow that there is a
unique functionf(x, Y z) such thatf, (x,y,2 =a(x,yz) forall x, y and z, f,,(0,y,2 =b(y,2 forall y and
z, £,(0,0,2) =c(2) forall z, and f(0, 0, 0)=d.

814.5, “Exercise 60”. This eercise concerns notation onlgot computation or proofTurn to the displayed
formulas in Example 4, p. 940.

(@) Revrite these formulas using the symbalg, X, etc. for partial devitives.
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(b) Thestatement of Example 4dvalves a functionf of four variables, and four functions, y, zand t of two
variables. Hencerewrite the same formulas using the symbdiis . f4 for the partial detviatives of the
function f with respect to its four arguments (i.e., input-positions),and x, for the partial dewatives of the
function x with respect to its tew aguments and the analogous symbols for the partialg,of and t with
respect to their tev aguments, and finallyw; and w, for the partial deviatives of w with respect tou
and v.

(c) Supposeave renamex, ¥ z, t as Xq, X,, X3, X4 — not meaning the partial deetives of a Linction x, but
simply four diferent functions distinguished by subscripts — and similarly rename the indepeadableg u
and v as u; and u,. Moreover, let us denote the partial deaives of x; with respect tou; and u, by X;4
and x;,, and in general denote the partial defives of each x; with respect tou; and u, as x4 and X »
respectiely. As in part (b), let us write the partials df with respect to its four arguments &s ..., f,, and the
partials of w with respect tou; and u, as w;, W,. Using this notation, again rewrite the formulas of
Example 4.

(The two formulas you will get can be summarized nicely as a single formula higiotation, but | von't ask
you to do this since we hen’t reviewed that notation in this course.)

814.6, “Exercise 71”. Shaw that if u is a differentiable function oR or 3 variables, andf a dfferentiable
function of one variable, thenlf (u) = f'(u) Ju. Suggestion: use the “general fornof the Chain Rule ([240),
with n=1, but with the variables named differently.

815.3, “Exercise 42”. Supposef is a continuous posie real-valued function on an inteaV [a,3] where
0 < B—a < 2m Obtain by the method of this section a formula for the area of the region defined in polar
coordinates by the inequalities< < 8, 0<r <f(6). Compare your answer with the formulasegi on p 670.

815.4, “Exercise 34”. Consider a lamina with density functiop(x,y) which occupies a ggon D. Let us
define itsmomentabout a vertical linex=a, which we will write M(x:a)’ and itsmoment of inertiabout the
same line, which we will writd (x=a)’ to be the values of the double integrals

Mx=a) = [fX-)p(xY)dA  and  l-q = [f(x-a)?p(x,y)dA.
D D
(Thus, for the special casee= 0, we have M(x:O) = My and '(x:O) = Iy.)

(@) Shav that for all a, M, — .,y = M,, — am, where m is the mass of the lamina. What facts about double
(x=a) y

integrals do you use in proving this?

(b) Deducehat M(X:a) =0 if and only if the linex = a passes through the center of mass of the lamina.

(c) Obtaina formula forl(xza) in terms ofly, M,,, m, and a.

y1
(d) Wll there, in general, be a value af which males I(X:a) zero? Determinghe value ofa which males

I(x:a) a mnimum.

816.3, “Exercise 37”. Give an “almost-proof’ of Theorem 6 on p.1091 in the case where the domalh & a
rectangle {(x,y) Da<x<b, c<y<d}, as follows: Imitatingthe method of Example 4 on that page, find a
function f which you hope will hae gadient F. Show that your method of construction implies that some of
the desired equations hold; then use Claisatieorem to pree the remaining conditiongssumingthat the
hypothesis of Clairaus’ Theorem on continuous second partials is satisfied.
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(It is because of this assumption, which | dask you to pree, that | hae alled what you are to g an
“almost proof. Howeva, in mary special cases, this assumption is easy to check; e.d, dnd Q are
polynomial functions, in which case the functions you construct will also be polynomials, ane soritanuous
derivatives of dl orders.)

816.4, “Exercise 32”. Exercises 22 and 25 of this section1(p02) hae you prove formulas &pressingy, the
y-coordinate of the center of mass of a lamina of constant deasityl, , the moment of inertia of that lamina
with respect to the&-axis, as line integrals around the boundary of the lamina of an integrand\ahynigp dx;
and likewise hae you expressx and Iy as line integrals only wolving dy.

One can alsoxpressy and I, by line integrals only iwolving dy, and X and Iy by line integrals only
involving dx. Find and pree such formulas. (The function injeated in each formula can depend on bath
andy.)

816.5, “Exercise 40”. Give a1 “almost proof of Theorem 4, 105 by a method analogous to that suggested in
“816.3, Exercise 37above. (Cf. Example 5, p.1092.)

§16.5, “Exercise 41”. Suppose G = (U,V,W) is a vector field onfR3 whose component functions vea
continuous partial derétives, and which satisfie§]- F = 0. Give an “almost proof (as in “816.3, Exercise 37’
and “816.5, Exercise 40") that there exists a unique vector fiekd (P, Q R) such thatP is everywhere zero,
Q is zero on thg-z-plane (i.e.,Q(0,y,2 =0 for all y and z), and R zero on thez-axis, and which satisfies
OxF=G.

(The idea is like that of the two exercises mentioned, but with the complication that forvegiG, the F
such thatOxF = G is far from unique: If one vector fieléF satisfies that equation, then so witl+ Of for
evey continuously differentiable functiof. Hence | hae imposed extra conditions to get uniqueness; these will
actually malk it easier for you to find the desireld. Why the conditions | state are appropriate ones to eliminate
the nonuniqueness arising from adding a gradient vector field is suggested by “8kt@3seE£07(c)’above,
which shows he much freedom we h& t prescribe the gradient of a function of three variables; but you do not
need to do thatercise to do this one.)

816.6, “Exercise 65”. Let S be a surface gén in pherical coordinates by an equatipre f (6, ¢), wheref is
a positive-valued continuously differentiable function on somgiae D in {(6,¢) U0< < 2m 0< ¢ < 71}.
Find a formula for the area @ in terms of f. Suggestion: Ty direct calculation from Definition 6 on p.1117
for 10 minutes or until you decidedttoo messythen try the method suggested belo

Sugyested method Let u(g, ¢) (“u” standing for ‘unit vector’) denote the point ofR 3 with spherical
coordinates (14, ¢). Thus, our surfaces is described by the parametric vector equation

r(6,.¢) = f(6,4)u(é,¢).

(@) For r(6,¢) given by the abeoe ejuation, apressr, and Mg in terms of f and u and their partial
dervatives. (Cf.Theorem 3, ;858. Dont actually compute the partial deatives d u at this stage; that comes
next.)
(b) Write out the cartesian coordinates of the vector functionu(6, ¢), and compute its partial destives u,
and Ug.
(c) Verify that u, u, and u; are mutually perpendicularDetermine their magnitudes as functions @f
and ¢.
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(d) Combiningthe results of (a) and (c), compuuee*r¢|.
(e) Substitutehe result from (d) into the Definition on p.1117 to obtain a formula for the ar8a of

817.1, “Exercise 36". On p.1156, Stgart leads us through a disa@y of the general solution to the linear
differential equation with constant cbefents ay’ + by’ + cy = 0 when the auxiliary equation
ar2 + br + ¢ =0 has distinct real roots, and on p.1157, he shows us that this solution can be adapted to the case
where it has distinct compleconjugate roots. In the case where the equation hasetal roots (i.e., where
b2 - dac= 0), that approach leads to only one solutips €', where r is this root. In that case, Steart does
not shav how one might disceer a lution linearly independent of this one, but simply hands us such a solution
on a platter (p.1156, bottom and 1157, top).

In class, | showed one way of disedng this solution. This»ercise shows you anothefhe idea is that a
guadratic equation with equal roots,and r, can be written as Bmit of quadratic equations with distinct roots,
r andr+eg, as € - 0. Thus,one can try to solva dfferential equation whose auxiliary equation has equal roots
by taking limits of solutions to diérential equations whose auxiliary equationgehdstinct roots. Let us lggn
with
(@) If r and ¢ are real numbers, determine the real numungrrag and Crree such that the quadratic equation

t2 + b t+c =0

nr+e nr+e
hasr and r+¢ as its roots.(Hint: if the polynomial has these dwoots, hev must it factor?)
(b) Fortheb, .., andc,  ,, computed abeg, find the general solution to the differential equation
y + br, r+€y’ + Cl’, l’+£y = 0’
assuminge# 0. (Hint: you already knw the roots of its characteristic equation.)

(c) Findthe solution to the alve dfferential equation that satisfies the initial conditigr{®) = 0, y'(0) = 1. We

shall call this functionu, .

n

(d) Holding r fixed and lettinge go to zero, compute lim uy r+¢(X). Call this function Uy (x).

(e) Settinge=0, write downb, . andc and test whethew, | satisfies the differential equation

(A

y”+br’ry’+cr‘ry =0.

(f) Verify that u,, and e are linearly independent, and combine them to obtain the general solution to the
differential equation of part (e).

Remark: The steps ab®were all obvious things to dxeept for (c). If instead of (¢c) we had just looked at
the two exponential solutions and taken their limits as- 0, thesdimits would hae been the same, and not
given two linearly independent solution®ut by looking for a solution with properties that cannot be satisfied by
an exponential function, and which are preserved on taking limits, one gets apooedial solution of the
limiting differential equation.

817.1, “Exercise 37". Determine for what values ofa, b ¢ and d the differential equation
y" — 6y’ + 25y = 0 with boundary-value conditiong(a) = b, y(c) =d has a unique solution, for what values it
has no solution, and for what values it has more than one sol@lmw that if it has more than one solution, it
has infinitely map.

817.1, “Exercise 38”. Generalizing the last part of the akopoblem, shw that if a differential equation
PX)y"+ QXY + RX)y = G(x) has more than one solution satisfying some boundalyevconditions
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y(a) = b, y(c) =d, then it has infinitely mansolutions satisfying those conditions.
817.2, “Exercise 29". SupposeyID (x) is a ®lution to a differential equation
ay" +by +cy = G(x),

and suppose that, as in the method of variation of parametersyavebkgined it as a sum
(1) Yp = Ugyp tuys
wherey; andy, are linearly independent solutions to the homogeneous equation
(2) ay" +by +cy =0,
and uy, u, are functions satisfying
3) uiy; +usy, = 0.

Now suppose that for some real numbegy we find the unique constantg and c, such that the function

(4) Yy = C1Y1 ¥ CoYs
is tangent toyp at X =Xq; i.e., satisfies the initial conditions
() y(Xg) = yp(Xo), y'(Xg) = yF’)(XO).

Prove that these constants will bevgn by

(6) Cl = Ul(Xo), C2 = U2(Xo) .
817.3, “Exercise 19”. Supposemy’ + cy' + ky =0 is the equation of anverdampedscillator.

() Stevart writes on p.1170 thatlt’ s possible for the mass to pass through the equilibrium position oate, b
only once”. In particular he is &serting that no nonzero solution to theabdfferential equation has more than
one zero. Pnee that assertion.

(b) Supposedhat for each real numbea we consider the solution to the akodfferential equation which
satisfies the initial conditiony(0) =1 and y'(0) =a. For what values ofa will this solution hae ro zeros?
Have ae zero withx positve? Haveone zero withx negative?

(c) Insteadof restricting attention to solutions withh(0) =1, andlooking at them in terms of the value gf(0),
let us tale the general solutiory = clerl + czerZ, and require only thatc; and ¢, not both be zeroThen
there are more cases to consider:
Find necessary and $iefent conditions onc; and c, for y to be @erywhere positie, for y to be
evaywhere ngdive, for y to have a 2ro to the left of which it is posie and to the right of which it is mstive,
and fory to have a 2ro to the left of which it is mgtive and to the right of which it is posit. In the latter tvo
cases, determine under what conditions the zero will occur to the left of the origin, at the origin, or to the right of
the origin.

817.3, “Exercise 20". Supposemy' + cy' + ky =0 is the equation of aritically dampedoscillator Examine
for this equation the questions analogous to those of the precadinige.

817.4, “Exercise 13”. (a) Supposey is a function defined on the whole real line, which satisfies thereiitial
equationy'’ =y. Show that the Maclaurin series for corverges toy for all x.

(Hint: Given any x, let My be the maximum value ofy| on the closed interval betweed and x, let M
be the maximum value ofy’| on that interval, and letM, be the maximumalue of |y"| on that intenal.
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Taking M to be the largest of these three numberswshatall derivatives o y have @solute values bounded

by M on that interal. Thenapply the remainder estimate for Taylor series.)
(b) Supposespecifically that f(x) is a fnction satisfying the abe dfferential equation and the initial
conditions f4(0) = 1, f3(0) = 0, f3'(0) = 0, and let us defing (x) = fy(x), and f,(x) =fy'(x). Show that each

of these functions also satisfies theegidifferential equation, say what initial conditions each of them satisfies,
and gve their Maclaurin series.

(c) For fy, f, f, asin part (c), shw that every solution to the differential equatiog’™ =y can be written
Afp(x) + Bf(x) + Cfy(x) for some real constants, B, C (Hint: Shav that the corresponding statement is true
for Maclaurin series, and use part (a).)

WX

wX

(d) Shav how to express the ahe function fo(x) in terms of the functione®, e®* and e? X, where w is

the compl& cube root of 1 given hy
w=e?M3 = (“1+v=3)/2.
Deduce corresponding descriptionsfg{x) and f,(x).

Remark: Theabore dosenations lead to an alternadi nethod of solving Problem Plus number 25 orga
(which was an‘interesting/challenging’problem note in connection with §11.9). But for that Problem Plus, the
method | suggested in class is much quicker.

817.4, “Exercise 14”. Consider the differential equation with boundary conditions
y'-y'-y =0, y(0)=0,y'(0) =1
(a) Sole the abee g/stem as a power serie€Suggestion: Firsietermine a general formula fayr(”)(O).)
(b) Solwe the aboe g/stem using the method of 817.1, and express the solution as a power series.
(c) Thetwo power series that you get must be equal; what conclusion do you get when you equate them?
Remark: Thesame conclusion is gotten in Problem Plus number 24 on p. 790, using a ratatétekent
power series.

Appendix F, “Exercise 1”. We sall obtain here the result omitted in Béet's proof (p. A46) of LHospital's
rule (p.A45), namely the case whefeand g approach+~. We begn, for simplicity, with the case of whera
approaches a finite value from one side.

(@) Prae thatif limy o+ |g(X)| =c0 and if lim, .. f'(x)/g'(x) is aeal numberL, then

limy, | o+ f(X)/g(x) = L.
(Suggested outline: @n ¢, first choosed; such that for allx [i(a, a+ &) we have
[f'(x)/g'(x) = L| < min(1,¢/3).

Then shw that we can choos& < §; such that for allx[(a, a+ 9), g(x) is lage enough to force the ow
conditions

[f(a+d))l/lg(x)-g(@a+ )| < /3
and

(IL]+2¢/3) lg(a+dy) Ig(x)| < /3.
Now for ary x[(a, a+d) apply Caucly’s Mean Value Theorem té and g on the interal [x, a+¢], and
shaw that for the resultingc, each of the following four terms dérs from the next by< ¢/3: (i) L, (ii) the
common value of the twsdes of the equation ggn by Cauchys Mean Value Theorem, (iii) the right-hand side
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of that equation with the-f(a+9;) removed from the numeratorand (iv) the same expression with the
—-g(a+ ;) aso remwed from the denominatorVerify that this shows thatf (x)/g(x) - L| <e.)

(b) Shav how to deduce from the alve result, first, the corresponding statement for. a-, then the statement
for x - a; then the corresponding results witf{x) — —, and finally, the corresponding statements where
is infinite, rather than a real number.

Appendix H, “Exercise 51". If a and b are real numbers, and a ronneaive integer let S(a,b,n =

SR= sin@k+b).

(&) Assuminga is not an exact multiple o2 77, find a formula in “closed form{i.e., without summation signs)

for S(a, b, n). (Suggestion: UsExercise 48, together with what you kmabout summing finitely manterms

of a geometric seriesThe proof of the formula for summing a geometric series is based on laws of arithmetic that
hold for compl& as well as for real numbers, hence it is true for complembers as for real numbers.)

(b) Finda formula for S(a, b, n in the case not a@red by (a), namelwhen a is an integer multiple of 2.
(c) Shavthatin case (a) abe, for ary values ofa and b, the sequenceS(a, b, n))‘;;’zo is bounded.
(d) Whatcan be said about the boundedness or unboundedneS&ob,(n )‘r’]°=0 in case (b)?

(e) Shaev that if in case (a) ave me lets U(a,b) denote the least upper bound of the sequence
(S(a, b,rp)‘r’fzo, then for ay b, limy 4 |U(a, b)| =«. (Itis difficult to gve an exact formula forU (a, b), but
one can she that it becomes large by finding values that it exceeds.)

Appendix H, “Exercise 52”". Find a formula for the function S (i.e., (sinx)5) of the form

sin5x =C sinx + Cy Sin 2x + C3 sin3x + ... +Cp sinnx,

where n is some positie integer and cq, ..., C, are real constants(Suggestion: mak wse of the formula

. . n
sinx= (% - e %) /2i.)



